More on decision trees

Lecture 03 *by Marina Barsky*

Decision tree induction algorithm

current set = all

parent entropy = entropy of current set

• Step 1.

For each attribute:

compute entropy of a split on this *attribute* compute information gain vs. *parent entropy best attribute* = attribute with maximum information gain

• Step 2.

create a node with *best attribute* create branch for each possible attribute *value* split instances into *subsets* according to the *value* of *best attribute*

• Step 3.

For each *subset* in *subsets*:

If no split is possible then

create leaf node

mark it with the majority class

Else

```
current set = subset
parent entropy = entropy of current set
go to Step 1
```

*Iterative Dichotomiser 3

Decision tree for weather dataset

The weather data with ID code

ID code	Outlook	Temp.	Humidity	Windy	Play
А	Sunny	Hot	High	False	No
В	Sunny	Hot	High	True	No
С	Overcast	Hot	High	False	Yes
D	Rainy	Mild	High	False	Yes
E	Rainy	Cool	Normal	False	Yes
F	Rainy	Cool	Normal	True	No
G	Overcast	Cool	Normal	True	Yes
н	Sunny	Mild	High	False	No
I	Sunny	Cool	Normal	False	Yes
J	Rainy	Mild	Normal	False	Yes
к	Sunny	Mild	Normal	True	Yes
L	Overcast	Mild	High	True	Yes
М	Overcast	Hot	Normal	False	Yes
N	Rainy	Mild	High	True	No

ID3 algorithm

- Design issues
 - Split criteria
 - Stop criteria
 - Multi-valued attributes
- Limitations
- Real-life examples

Entropy of split:

info("ID code") = info([0,1]) + info([0,1]) + ... + info([0,1]) = 0 bits

⇒ Information gain is maximal for ID code (namely 0.940 bits)

However this tree is of no use for classification!

- ID3 algorithm
- Design issues
 - Split criteria
 - Stop criteria

• Multi-valued attributes

- Limitations
- Real-life examples

Highly-branching attributes

- Subsets are more likely to be pure if there is a large number of values (pure but small)
 - Information gain is biased towards multi-valued attributes

- ID3 algorithm
- **Design** issues
 - Split criteria
 - Stop criteria

- Multi-valued attributes
- Limitations
- **Real-life examples**

My neighbor dataset

Temp	Precip	Day	Clothes	
22	None	Fri	Casual	Walk
3	None	Sun	Casual	Walk
10	Rain	Wed	Casual	Walk
30	None	Mon	Casual	Drive
20	None	Sat	Formal	Drive
25	None	Sat	Casual	Drive
-5	Snow	Mon	Casual	Drive
27	None	Tue	Casual	Drive
24	Rain	Mon	Casual	?

- ID3 algorithm
- Design issues
 - Split criteria
 - Stop criteria
 - Multi-valued attributes
- Limitations
- Real-life examples

• ID3 algorithm

- Design issues
 - Split criteria
 - Stop criteria
 - Multi-valued attributes
- Limitations
- Real-life examples

Solution: the gain ratio

- Intrinsic information: entropy (with respect to the attribute on focus) of the node to be split.
- Gain ratio: information gain divided by intrinsic information of the split

- ID3 algorithm
- Design issues
 - Split criteria
 - Stop criteria
 - Multi-valued attributes
- Limitations
- Real-life examples

Computing the gain ratio

- Example: intrinsic information for ID code info([1,1,...,1)=14×(-1/14×log1/14)=3.807 bits
- Value of attribute decreases as intrinsic information gets larger
- Definition of gain ratio:

ga

gain_ratio("Attribute") = $\frac{\text{gain}("Attribute")}{\text{intrinsic_info}("Attribute")}$

Example:

ain_ratio("ID_code") =
$$\frac{0.940 \text{ bits}}{3.807 \text{ bits}} = 0.246$$

- ID3 algorithm
- Design issues
 - Split criteria
 - Stop criteria
 - Multi-valued attributes
- Limitations
- Real-life examples

Gain ratio vs. information gain

Temp	Precip	Day	Clothes	
Warm	None	Fri	Casual	Walk
Chilly	None	Sun	Casual	Walk
Chilly	Rain	Wed	Casual	Walk
Warm	None	Mon	Casual	Drive
Warm	None	Sat	Formal	Drive
Warm	None	Sat	Casual	Drive
Cold	Snow	Mon	Casual	Drive
Warm	None	Tue	Casual	Drive
Warm	Rain	Thu	Casual	?

All: Info(3,5)=0.95

Temp: 4/8 Info(1,3)+2/8 Info(2,0)+1/8 Info(1,0)=0.41 **Precip**: 6/8 Info(2,4)+ 1/8 Info(1.0) + 1/8 Info(1,0)=0.67

Day:0

Clothes: 7/8 Info(3,4)+1/8 Info (1,0)=0.86

- ID3 algorithm
- Design issues
 - Split criteria
 - Stop criteria

Multi-valued attributes

- Limitations
- Real-life examples

Gain ratio vs. information gain

Temp	Precip	Day	Clothes	
Warm	None	Fri	Casual	Walk
Chilly	None	Sun	Casual	Walk
Chilly	Rain	Wed	Casual	Walk
Warm	None	Mon	Casual	Drive
Warm	None	Sat	Formal	Drive
Warm	None	Sat	Casual	Drive
Cold	Snow	Mon	Casual	Drive
Warm	None	Tue	Casual	Drive
Warm	Rain	Thu	Casual	?

Attribute	Info gain	Intrinsic entropy	Gain ratio
Temp	0.54	Info(5,2,1)=1.29	0.54/1.29 <mark>=0.42</mark>
Precip	0.28	Info(6,1,1)=1.06	0.28/1.06=0.26
Day	0.95	Info(1,1,1,2,2,1)=2.5	0.95/2.5=0.38
Clothes	0.09	Info(7,1)=0.54	0.09/0.54=0.17

- ID3 algorithm
- Design issues
 - Split criteria
 - Stop criteria
 - Multi-valued attributes
- Limitations
- Real-life examples

Weather data – numeric attributes

Temp		Temp
Hot		30
Warm		15
Warm		16
Hot	In Canada ←──	27
Hot		25
Warm		17
Warm		17
Hot		35

- ID3 algorithm
- Design issues
 - Split criteria
 - Stop criteria
 - Multi-valued attributes
 - Numeric attributes
 - Missing values
 - Overfitting
- Limitations
- Real-life examples

Weather data – temperature categories

Temp		Temp		Тетр
Warm		30		Hot
Chilly		15		Chilly
Chilly		16		Chilly
Cold	In India ←	27	\rightarrow	Warm
Cold		25		Warm
Chilly		17		Chilly
Chilly		17		Chilly
Warm		35		Hot

The weather *categories* are arbitrary.

Meaningful breakpoints in continuous attributes?

- ID3 algorithm
- Design issues
 - Split criteria
 - Stop criteria
 - Multi-valued attributes
 - Numeric attributes
 - Missing values
 - Overfitting
- Applications
- Limitations
- Real-life examples
- Extracting rules from trees

Numeric attributes: strategic goal

- Find numeric breakpoints which separate classes well
- Use the entropy of a split to evaluate each breakpoint

- ID3 algorithm
- Design issues
 - Split criteria
 - Stop criteria
 - Multi-valued attributes
 - Numeric attributes
 - Missing values
 - Overfitting
- Applications
- Limitations
- Real-life examples
- Extracting rules from trees

Bankruptcy example

# Late payments/ year (L)	Expenses/ income (R)	Bankruptcy (B)
3	0.2	No
1	0.3	No
4	0.5	No
2	0.7	No
0	1.0	No
1	1.2	No
1	1.7	No
6	0.2	Yes
7	0.3	Yes
6	0.7	Yes
3	1.1	Yes
2	1.5	Yes
4	1.7	Yes
2	1.9	Yes

(Leslie Kaebling's example, MIT courseware)

Bankruptcy example

- Consider splitting (half-way) between each data point in each dimension.
- We have 9 different breakpoints in the R dimension

Bankruptcy example

 And there are another 6 possible breakpoints in the L dimension

Evaluate entropy of a split on *L*

And on R

		2 -									
R <y< th=""><th>Entropy</th><th>1.8-</th><th></th><th>٠</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></y<>	Entropy	1.8-		٠							
1.80	0.92	1.6-									
1.60	0.98	1.7		٠							
1.35	0.92	R 1		•							
1.15	0.98	0.8-									
1.05	0.94	0.6-			•						
0.85	0.98	0.4-		•			•				
0.60	0.98	0.2-		•		٠					
0.40	1.0	0 -		1			1		6		
0.25	1.0	(J	1	Z	С	4 L	Э	0	/	0

The best split point: min entropy

• The best split: all the points with L not greater than 1.5 are of class 0, so we can make a leaf here.

Re-evaluate for the remaining points

R <y< th=""><th>Entropy</th></y<>	Entropy
1.80	0.92
1.60	0.98
1.30	0.92
0.90	0.60
0.60	0.79
0.40	0.88
0.25	0.85

 Consider only the remaining points. The entropy is recalculated, since the numbers have changed and the breakpoints moved (only 7 out of 9 for R)

The next best split

• Split on R<0.9 and continue working with the remaining points

The final tree

Decision trees divide data into multiple subspaces

Decision boundary of other algorithms divides data into only 2 subspaces

Numeric target attribute: prediction

- When the target attribute is numeric, the split should reduce the *variance* of the class values
- Variance the deviation of the population values from the mean:

the mean of the sums of the squared deviations from the mean:

Variance=average [(x_i-mean (X))²]

for each numeric value x_i in set X

Actual formula for a sample population used in the examples (var In Excel):

$$\frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N - 1}$$

- Design issues
 - Split criteria
 - Stop criteria
 - Multi-valued attributes
 - Numeric attributes
 - Missing values
 - Overfitting
- Limitations
- Real-life examples

Illustration: simplified

- O Represents value 0.0
- Represents value 1.0

- ID3 algorithm
- Design issues
 - Split criteria
 - Stop criteria
 - Multi-valued attributes

- Missing values
- Overfitting
- Limitations
- Real-life examples

Split based on variance

Mean=0.83 Mean=0.0 Variance=0.17 Variance=0.0

Variance of the split=6/10*0.17+4/10*0=0.10

- ID3 algorithm
- Design issues
 - Split criteria
 - Stop criteria
 - Multi-valued attributes
 - Numeric attributes
 - Missing values
 - Overfitting
- Limitations
- Real-life examples

Split based on variance

Mean=0.60 Variance=0.30

Mean=0.40 Variance=0.30

Variance of the split=0.10

Variance of the split=0.30

Choose the left split: variance reduction 0.18

- ID3 algorithm
- Design issues
 - Split criteria
 - Stop criteria
 - Multi-valued attributes
 - Numeric attributes
 - Missing values
 - Overfitting
- Limitations
- Real-life examples

<u>Regression</u> tree

- Stop when the variance at the leaf is small.
- Set the value at the leaf to be the mean of the class values

- ID3 algorithm
- Design issues
 - Split criteria
 - Stop criteria
 - Multi-valued attributes

- Missing values
- Overfitting
- Limitations
- Real-life examples

Types of learning tasks

Missing values: possible causes

- Malfunctioning measuring equipment
- 2. Changes in the experimental design
- 3. Survey may refuse to answer certain questions (age or income)
- 4. Archeological skull may be damaged
- 5. Merging similar but not identical datasets

- ID3 algorithm
- Design issues
 - Split criteria
 - Stop criteria
 - Multi-valued attributes
 - Numeric attributes

- Missing values
- Overfitting
- Limitations
- Real-life examples

Missing values: possible solutions

- Consider *null* to be a possible value with its own branch: "not reported"
 - People who leave many traces in the customers database are more likely to be interested in the promotion offer than those who leave most of the fields *null*
- Impute missing value based on the value in records most similar to the current record
- Follow all the branches of the tree with the weighted contribution

- ID3 algorithm
- Design issues
 - Split criteria
 - Stop criteria
 - Multi-valued attributes
 - Numeric attributes

- Missing values
- Overfitting
- Limitations
- Real-life examples

A1	A2	A3	Class
1	0	1	yes
1	0	1	yes
0	1	1	yes
0	0	1	no
1	0	0	no

- To test the split on attribute A3:
 - If we know the value, we treat it with probability 1.0 (100%):

Info (instances (A3=1))=Entropy (3/4,1/4)

Info (instances (A3=0))=Entropy (0/1, 1/1)

- ID3 algorithm
- Design issues
 - Split criteria
 - Stop criteria
 - Multi-valued attributes
 - Numeric attributes

- Missing values
- Overfitting
- Limitations
- Real-life examples

A1	A2	A3	Class
1	0		yes
1	0	1	yes
0	1	1	yes
0	0	1	no
1	0	0	no

- To test the split on attribute A3:
 - If the value is missing we estimate it based on the popularity of this value: it might be 1 with probability 0.75 it might be 0 with probability 0.25 we count it in both branches:

- ID3 algorithm
- Design issues
 - Split criteria
 - Stop criteria
 - Multi-valued attributes
 - Numeric attributes

- Missing values
- Overfitting
- Limitations
- Real-life examples

A1	A2	A3	Class
1	0		yes
1	0	1	yes
0	1	1	yes
0	0	1	no
1	0	0	no

Distribute between both branches

- ID3 algorithm
- Design issues
 - Split criteria
 - Stop criteria
 - Multi-valued attributes
 - Numeric attributes

- Missing values
- Overfitting
- Limitations
- Real-life examples

A1	A2	A3	Class
1	0		yes
1	0	1	yes
0	1	1	yes
0	0	1	no
1	0	0	no

Distribute between both branches

ID3 algorithm

- Design issues
 - Split criteria
 - Stop criteria
 - Multi-valued attributes
 - Numeric attributes

- Missing values
- Overfitting
- Limitations
- Real-life examples

Missing values: entropy update

Info (instances (A3=1))= Entropy(2.75/3.75, 1.0/3.75) Info (instances (A3=0))= Entropy(0.25/1.25, 1.0/1.25)

- ID3 algorithm
- Design issues
 - Split criteria
 - Stop criteria
 - Multi-valued attributes
 - Numeric attributes

- Missing values
- Overfitting
- Limitations
- Real-life examples

Missing values: compare

A1	A2	A3	Class
1	0	1	yes
1	0	1	yes
0	1	1	yes
0	0	1	no
1	0	0	no

Info (instances (A3=1))=Entropy (3/4,1/4) Info (instances (A3=0))=Entropy (0/1, 1/1)

A1	A2	A3	Class
1	0		yes
1	0	1	yes
0	1	1	yes
0	0	1	no
1	0	0	no

Info (instances (A3=1))= Entropy(2.75/3.75, 1.0/3.75) Info (instances (A3=0))= Entropy(0.25/1.25, 1.0/1.25)

- ID3 algorithm
- Design issues
 - Split criteria
 - Stop criteria
 - Multi-valued attributes
 - Numeric attributes

- Missing values
- Overfitting
- Limitations
- Real-life examples

Error rate in training and testing sets

In a test set: If *N* records arrive at a leaf, and *E* of them are classified incorrectly, then the error rate at that node is *E*/*N*.

Class label:

interested in building web ML apps?

- Error rate of the training set (built on 4 instances): 0
- Error rate on test set: ?

- ID3 algorithm
- Design issues
 - Split criteria
 - Stop criteria
 - Multi-valued attributes
 - Numeric attributes
 - Missing values
 - Overfitting
- Limitations
- Real-life examples

Overfitting: too confident prediction

- Attempt to fit all the training data. When the number of records in each splitting subset is small, the probability of splitting on noise grows
- The tree is making predictions that are more confident that what can be really deduced from the data

- ID3 algorithm
- Design issues
 - Split criteria
 - Stop criteria
 - Multi-valued attributes
 - Numeric attributes
 - Missing values
 - Overfitting
- Applications
- Real-life examples

Handling overfitting: main strategies

- Post-pruning take a fully-grown decision tree and discard unreliable parts
- *Pre-pruning -* stop growing a branch when information becomes unreliable

Post-pruning preferred in practice—prepruning can "stop too early"

- ID3 algorithm
- Design issues
 - Split criteria
 - Stop criteria
 - Multi-valued attributes
 - Numeric attributes
 - Missing values
 - Overfitting

- Limitations
- **Real-life examples**

Limitations. Rectilinear decision boundaries

- Boolean split: the instances are divided by the boundaries which are parallel to the axes
- Solution: use all reasonable combinations of attributes.

Non-rectilinear boundaries: attribute combinations

One-level decision tree

Decision trees in real life

- Selecting the most promising eggs for invitro fertilization – England, 2000
- Soybean disease classification 1979, 97% accuracy vs. 72% by human expert
- Classification system for serial criminal patterns (CSSCP) - using three years' worth of data on armed robbery, the system was able to spot 10 times as many patterns as a team of experienced detectives with access to the same data.
- Computer Assisted Passenger Screening system (CAPS) for screening potential terrorists and drug smugglers at border crossings

- ID3 algorithm
- Design issues
 - Split criteria
 - Stop criteria
 - Multi-valued attributes
 - Numeric attributes
 - Missing values
 - Overfitting
- Limitations

Real-life applications

Border crossing example: gross oversimplification

- Age: 20-25
- Gender: male
- Nationality: Saudi Arabia
- Country of residence: Germany
- Visa status: student
- University: unknown
- # times entering the country in the past year: 3
- Countries visited during the past 3 years: U.K., Pakistan
- Flying lessons: yes

Assessment: possible terrorist (probability 29%) Action: detain and question

Carnival Booth: An Algorithm for Defeating the Computer-Assisted Passenger Screening System

- **ID3** algorithm •
- **Design** issues
 - Split criteria
 - Stop criteria
 - Multi-valued attributes
 - Numeric attributes
 - Missing values
 - Overfitting
- Limitations

Real-life applications